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Inclusive hadron production cross sections in e
�

e � colli-
sions have turned out to be one of the many successful pre-
dictions of perturbative QCD. For reactions at an energy scale
much above ΛQCD one can factorize the cross section into a
short-distance parton cross section which is computable or-
der by order as a series in αs

�
Q2 � ; and a long-distance phe-

nomenological object (the single hadron inclusive fragmen-
tation function) which contains the non-perturbative infor-
mation of parton hadronization. These fragmentation func-
tions can be defined in an operator formalism and hence are
valid beyond the perturbative theory. They, however, cannot
be calculated perturbatively and have to be, instead, inferred
from experiments. The definition of these functions affords
them the mantle of being universal or process-independent.
Once these functions are measured at a given energy scale,
they can be predicted for all other energy scales via the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion equations

In this article [1], we will be concerned with the double
inclusive fragmentation function Dh1 � h2

q
�
z1 � z2 � Q2 � or the di-

hadron fragmentation function in e
�

e � annihilation. The oper-
ator definition of this function is not merely a trivial extension
of the single hadron case; there are no straightforward sum
rules connecting it to single inclusive fragmentation functions.

In the limit of very large Q2 of the reaction, we invoke the
collinear approximation. Under this approximation, at leading
twist, we demonstrated the factorization of the two-hadron in-
clusive cross section into a hard total partonic cross section σ0

and the double inclusive fragmentation function Dh1h2
q

�
z1 � z2

�
(see Ref. [1] for details),

d2σ
dz1dz2 � ∑

q
σqq̄

0

�
Dh1h2

q
�
z1 � z2

�	� Dh1h2
q̄

�
z1 � z2

��

� (1)

In the above equation, the leading order double inclusive frag-
mentation function of a quark is obtained as

Dh1 � h2
q

�
z1 � z2

� ��� dq2�
8
�
2π � 2 z4

4z1z2 � d4 p�
2π � 4 � d4xeip � x

2n � ph
∑
S

Tr ���n � 0 �ψα
q
�
x � � p1 p2S ��� p1 p2S � ψ̄β

q
�
0 � � 0 ��� δ � z � p

�
h

p
��� � (2)

In the above equation z � z1
� z2, p represents the momentum

of the fragmenting parton, ph is the sum of the momenta of
the two detected hadrons i.e. p1

� p2 and n is a light-like
null vector. The sum over S indicates a sum over all possible
final hadronic states. The above equation may be represented
by the diagrams of the cut vertex notation as that in Fig. 1.
Note that all transverse momentum q � up to a scale µ � have
been integrated over into the definition of the fragmentation
function. Hadrons with transverse momenta  µ � may not
emanate from the fragmentation of a single parton.
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FIG. 1: The cut-vertex representation of the dihadron fragmentation
function.

We also derive the DGLAP evolution of the dihadron frag-
mentation functions by computing the double inclusive cross
section at next to leading order (NLO). In the remaining, we
will focus on the non-singlet (NS) fragmentation functions
for simplicity. In this case, the contribution from dihadron
gluon fragmentation drops out. Summing over the contribu-
tions from soft gluon bremsstrahlung and independent single
fragmentation following a semihard split we obtain the NLO
contribution to the NS dihadron fragmentation function as,

Dh1 � h2
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�
z1 � z2 � Q2 � � Dh1 � h2
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where the leading order fragmentation functions are defined
as matrix elements of field operators. The operator expres-
sions for the single inclusive fragmentation functions may be
obtained from Ref. [1]. The � functions indicate the inclusion
of both real and virtual contributions. The full DGLAP evo-
lution equation is obtained by substituting the LO fragmenta-
tion functions in the above equation with the expressions for
the NLO fragmentation functions and interating the process.
For phenomenological applications of this formula see Refs.
[1, 2]
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